『ならの道リフレッシュプロジェクト』の取組みについて ~一般国道 165 号の「舗装の耐久性向上」に向けて~

宇陀土木事務所 工務課施設保全係 山本 直弥

1. はじめに

近年、道路インフラの老朽化が全国的な課題となる中で、奈良県においても舗装の劣化対策および維持管理コストの縮減が求められている。特に、生活基盤を支える主要幹線道路においては、快適性・安全性を確保しつつ、持続的な道路管理を実現する必要がある。

従来奈良県では、限られた予算内で多くの路線を修繕するため、切削オーバーレイによる 表層・基層修繕を中心に行われていたが、早期の損傷が目立ち、修繕が追い付かない状態と なっていた。

このことから、令和 5 年度に[快適な道路空間を道路利用者に提供すること]を目指し、舗装の耐久性向上、区画線の維持修繕、草刈りのメリハリ化に重点を置いた「ならの道リフレッシュプロジェクト」が立ち上げられた。

本プロジェクトは、5ヶ年計画(令和6年度~令和10年度)として大型車交通量1,000台/日・方向以上の県管理道路(約122km)の路線のうち損傷度Ⅱ、Ⅲ(約80km)の道路を対象としたものである。さらに令和7年度より対象路線を拡大し、自動車交通量10,000台/日以上の県管理道路(約198km)を令和10年までの4ヶ年計画として追加された。

今回、本プロジェクトの「舗装の耐久性」に着目し、設計時における取り組みについて述べる。

2. 「ならの道 リフレッシュプロジェクト」のながれ

(1) 路面性状調査

路面性状測定車により、測定した「ひび割れ率」、「わだち掘れ量」、「IRI(International Roughness Index)」の3つの指標から舗装の損傷度を判定する。

(2) 修繕区間の決定

路面性状調査により、各指標のうち1項目以上基準値を上回った区間を損傷度Ⅲと判定し、当該区間を修繕対象とする。

(3) FWD 調査(Falling Weight Deflectometer)

路面性状調査により損傷度Ⅲと判定された区間においてFWD調査を実施し、舗装構造の支持力や損傷状況、路床のCBR値を測定する。

この調査手法により、舗装構造における各層の損傷度が確認出来ることから舗装全体の構造的な健全性が明らかとなり、その後の設計において適切な修繕方法の選定が可能となる。

(3) 舗装修繕設計

FWD 調査により得られた結果から、路床の CBR 値、及び残存 Ta (残存等値換算厚)に基づ

き、舗装構成を決定する。

表-1 疲労破壊輪数の基準値(普通道路,標準荷重 49kN)

交通量区分	舗装計画交通量	疲労破壊輪数	疲労破壊輪数		
	(単位:台/日・方向)	(単位:回/10年)	(単位:回/20年)		
N7	3,000以上	35, 000, 000	70, 000, 000		
N ₆	1,000以上 3,000未満	7, 000, 000	14, 000, 000		
N ₅	250以上 1,000未満	1, 000, 000	2, 000, 000		
N4	100以上 250未満	150, 000	300, 000		
Nз	40以上 100未満	30, 000	60,000		
N ₂	15以上 40未満	7, 000	14, 000		
N ₁	15未満	1,500	3,000		

従来設計方法と本プロジェクトの設計方法 は、ともに Ta 法によるものとしているが、 設計期間を10年から20年と定められた。

これにより図-2舗装構成の比較に示すとお り、前者の修繕厚さは基層・表層の 10cm の 構成となるが、後者は、上記2層に瀝青安定 処理路盤を加えた計 18cm の構成となり高い 耐久性が確保できる。

このような高い耐久性を確保するための初 期修繕に係る費用は高額になるが、補修頻度 が低減するため、長期的な維持管理コストの 削減が期待できる。

信頼度 90%の場合
$$T_A = \frac{3.84N^{0.16}}{CBR^{0.3}}$$
 (2.1)

設計 CBR12

設計期間 10 年

必要 $T_A=(3.84 \cdot 1000000^{\circ}0.16)/(12^{\circ}0.3)=16.6 \leq 17$

設計期間 20 年

必要 T_A=(3.84 · 2000000 0.16)/(12 0.3)=18.6≤19

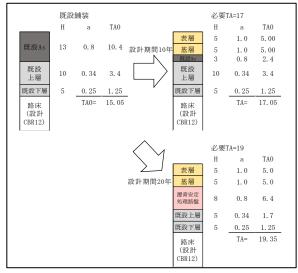


図-1(例)設計期間による舗装構成の比較

3. 宇陀土木事務所管内における「ならの道 リフレッシュプロジェクト」の取組み事例 (1) 一般国道 165 号について

本路線は、大阪市北区を起点とし、 奈良県大和平野地域の南部を経由して 三重県津市に至る主要幹線道路であ り、宇陀土木事務所管内管理区間 13.8㎞のうち、8.9㎞(交通量11,235 台/日 • 平成 27 年度一般交通量調査結 果)が本プロジェクトの対象区間であ る。

(2)路線の特性

一般国道 165 号における管内対象区 間は、山間部もあるため、切土により 構築された区間も多くみられ、線形と しては曲線部も多く、縦断勾配の変化 も大きい。

図-2 一般国道165号における「ならの道 リフレッシュプロジェクト」対象区間 「奈良県道路網図(6THs599)を転載」

(3)舗装の耐久性向上に向けた課題及び対応

本路線の特性から、舗装の耐久性に与える影響として以下の要因を検討する。

① 曲線部

走行時、カーブ外側に輪荷重が集中することにより、ひび割れ、わだち掘れ等の劣化が早く発生する(図-3)。

曲線部における左右の荷重移動量を式(1.1)(1.2)により求めるが、内輪に対して外輪には、荷重が約4.5t増加し、輪荷重は71kNとなる。

設計時、輪荷重は標準 49kN で設定するが、曲線外側においては、計算上 71kN と約 1.5 倍の輪荷重が発生する。このため、設計全区間を一律の舗装構成とすると曲線部の外側に損傷が集中することが予想できる。

図-3 曲線部損傷事例(一般国道 165 号榛原山辺三地内)

遠心加速度の計算式(3.1) 荷重移動量の計算式 (3.2) 計算条件 車両重心の高さ : 1.5m トレッド 左右輪間の荷重移動量(N) 2.0m 遠心加速度(m/s^2) h 車両重心高さ(m) 車両速度(m/s) 車両重量 20,000kg R 曲線半径(m) トレッド(左右輪の間隔)(m) 車両速度 50 km/h曲線半径 65m a。 横加速度(m/s^2)(カーブ時の遠心加速度)

本路線の交通量区分はN5(大型車交通量250~1,000台/日・方向)であり、設計期間20年で疲労破壊輪数は2,000,000回として計算するが、当該区間においては、前述に示した輪荷重を踏まえ、疲労破壊輪数を標準の1.5倍相当となる3,000,000回と設定し、必要Taを求めた。

その結果、通常区間の必要 Ta=19 に対し、曲線外側の必要 Ta=20(式 2.1)となり、当該曲線区間の早期損傷対策として、区間起終点については、図-4 の舗装構成を選定した。

② 急勾配部

急勾配な区間、及び勾配の変化点について

荷重移動量を考慮した Ta 計算(3.3)

設計期間20年

必要 T_A=(3.84 · 3000000^0.16)/(12^0.3)=19.8**≤20**

必要TA=20					
	Н	a	TAo		
表層	5	1.0	5.0		
基層	5	1.0	5.0		
瀝青安定 処理路盤	10	0.8	8		
既設上層	3	0.34	1.02		
既設下層	5	0.25	1.25		
路床 (設計 CBR12)		TA=	20. 27		

図-4 (例)荷重移動量を考慮した舗装構成

は、平坦な区間よりも大きな摩擦が発生するため損傷の発生が早くなる。特に、交差点の滞

図-4 急勾配部の交差点滞留区間における損傷状況(一般国道 165 号室生大野地内)

留区間においては、車両の発進・停止により、その摩擦はさらに大きく、この現象は顕著になる。

通常、表層材として再生密粒度アスファルト混合物を採用するが、上記要因である、摩擦による損傷を防止するため、耐流動性・耐摩耗性に優れる、改質Ⅱ型アスファルト混合部を採用する。

③ 山間部

当区間は、切土により構築された区間も多くみられ、法面から浸透した湧水が路盤に停滞する可能性が高く、凍結・融解を繰り返すことで路盤の支持力低下に繋がる。

そのため、本区間においては、舗装打換え時に路床と路盤の間に、排水性を有するシートを設け法面、または側溝に導水することにより路盤の湧水停滞対策とした。

図-5 切土部における損傷状況(一般国道 165 号室生大野地内)

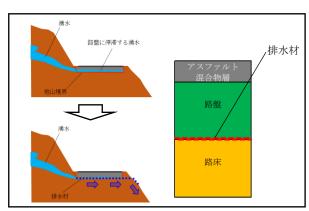


図-6 (例)路盤浸透水の対策

4. おわりに

「ならの道 リフレッシュプロジェクト」について、宇陀土木事務所管内における地域特性を考慮した設計時の取り組みを述べた。

ここまでに述べたとおり、舗装に与える損傷の要因は、地域や地形条件により異なるが、 本プロジェクトの目的としている舗装の耐久性向上を確実なものとするために、これらへの 対策が重要であると考える。

本稿で述べた内容は、設計時についてのものになるが、舗装の耐久性向上の確保は、設計だけでなく、施工時の管理に大きく左右されるため、本プロジェクトの目的を果たせるよう、今後の現場管理に努めたい。

最後に、本稿の作成にあたり御協力頂いた皆様に感謝の意を申し上げる。

参考文献

- 1) 日本道路協会:「アスファルト舗装の詳細調査・修繕設計便覧」,令和5年3月
- 2) 国道交通省「舗装点検要領」平成29年3月